VI - Statistical aspects of persistent homology

PSL Week - Topological Data Analysis

Abstract

We discuss how persistent homology behaves under random sampling. We highlight a notion of low intrinsic dimension called the (a, b)-standard assumption, and show how to leverage the stability of persistence, as well as elementary minimax theory, to study the problem of estimation of persistence diagrams.

Contents

1	Sam	pling assumptions and (a,b) -standard measures
	1.1	Distance function and Hausdorff distance
	1.2	(a,b)-standard measures
2		sdorff convergence of samples and consequences
	2.1	A non-asymptotic bound
	2.2	Plug-in estimation of persistence diagrams
3		nimax risk and Le Cam's lemma
	3.1	Risk and minimax risk
	3.2	Total variation distance
	3.3	Le Cam's two-point lemma
4	Min	imax rates for persistence
	4.1	Setup and upper bound
	4.2	Lower bound via Le Cam

1 Sampling assumptions and (a, b)-standard measures

1.1 Distance function and Hausdorff distance

Let $K \subset \mathbb{R}^d$ be compact. We recall the distance function to K.

Definition 1.1 (Distance function). The distance to K is

$$\operatorname{dist}(\cdot,): \mathbb{R}^d \to [0,\infty), \qquad \operatorname{dist}(x,K) := \min_{p \in K} ||x-p||.$$

Definition 1.2 (Offset). For r > 0, the r-offset (or thickening) of K is

$$K^r := \{x \in \mathbb{R}^d : \operatorname{dist}(x, K) \le r\} = \bigcup_{p \in K} \overline{B}_r(p).$$

Definition 1.3 (Hausdorff distance). Let A, B be compact subsets of \mathbb{R}^d . The *Hausdorff distance* between A and B is

$$d_H(A, B) := \min\{r \ge 0 : A \subset B^r \text{ and } B \subset A^r\}.$$

One can show the equivalent expression

$$d_H(A, B) = \sup_{x \in \mathbb{R}^d} |\operatorname{dist}(x, A) - \operatorname{dist}(x, B)|.$$

Intuitively, $d_H(A, B)$ is the smallest radius so that every point of A is within r of B and every point of B is within r of A (see Figure 1).

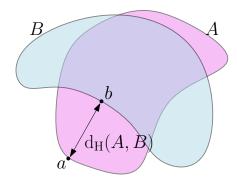


Figure 1: The Hausdorff distance between two subsets A and B of the plane. In this example, $d_H(A, B)$ is the distance between the point a in A which is the farthest from B and its nearest neighbor b on B.

1.2 (a, b)-standard measures

We now put a regularity condition on the sampling distribution.

Definition 1.4 ((a, b)-standard measure). Let P be a Borel probability measure on \mathbb{R}^d . We say that P is (a, b)-standard at scale r_0 if there exist constants a > 0, b > 0, $r_0 > 0$ such that for all $x \in \text{support}(P)$ and all $0 < r \le r_0$,

$$P(B(x,r)) \geq a r^b$$

Remark 1.5. Roughly speaking, a measure that is (a, b)-standard behaves on small scales like the b-dimensional Lebesgue measure:

- for b = d and P having a density bounded below on its support, this condition is satisfied;
- b does not need to be an integer: this covers fractal-like supports (e.g. Cantor-type sets).

The exponent b plays the role of an *effective dimension*: balls of radius r carry at least a constant times r^b mass, so the support cannot be too thin.

To quantify how "massive" the support is, it is convenient to introduce covering and packing numbers.

Definition 1.6 (Covering and packing numbers). Let $K \subset \mathbb{R}^d$ be bounded and r > 0.

• An r-covering of K is a family of balls of radius r whose union contains K. The covering number is

$$\operatorname{cov}(K,r) := \min \{ k : K \subset \bigcup_{i=1}^{k} B(x_i,r) \}.$$

• An r-packing of K is a family of disjoint balls of radius r with centres in K. The packing number is

$$\operatorname{pack}(K,r) := \max\{k : \exists x_1, \dots, x_k \in K, \ B(x_i,r) \ \operatorname{disjoint}\}.$$

Proposition 1.7 (Massiveness of (a,b)-standard measures). Let P be (a,b)-standard at scale r_0 and K = support(P). Then there exists a constant $C_{a,b} > 0$ such that for all $r \leq r_0$,

$$\operatorname{pack}(K, r) \leq \frac{1}{ar^b}, \quad \operatorname{cov}(K, r) \leq \frac{C_{a,b}}{r^b}.$$

Idea. If $B(x_1, r), \ldots, B(x_N, r)$ is a maximal packing, then these balls are disjoint and all contained in K^r , so

$$1 = P(\mathbb{R}^d) \ge \sum_{i=1}^{N} P(B(x_i, r)) \ge N a r^b,$$

which yields $N \leq 1/(ar^b)$. Using duality between coverings and packings (i.e. $pack(K, r) \leq cov(K, r) \leq pack(K, r/2)$) gives the covering bound.

Thus a (a, b)-standard measure has at most on the order of r^{-b} well-separated points at scale r, just like a b-dimensional cube $[0, 1]^b$.

2 Hausdorff convergence of samples and consequences

2.1 A non-asymptotic bound

Let P be (a, b)-standard at scale r_0 , and let X_1, \ldots, X_n be i.i.d. with distribution P. We denote the sample by

$$\mathcal{X}_n := \{X_1, \dots, X_n\} \subset \mathbb{R}^d.$$

The following proposition shows that \mathcal{X}_n converges to the support of P in Hausdorff distance, with a rate governed by b.

Proposition 2.1 (Hausdorff convergence under (a,b)-standardness). Let P be (a,b)-standard at scale r_0 , with compact support K = support(P). Let \mathcal{X}_n be an i.i.d. sample from P. Then:

(a) There exist constants $C_{a,b,\alpha} > 0$ such that for any $\alpha > 0$ and all n large enough,

$$\mathbb{P}\Big(d_H(K,\mathcal{X}_n) > \left(C_{a,b,\alpha} \frac{\log n}{n}\right)^{1/b}\Big) \leq n^{-\alpha}.$$

(b) Equivalently, for any confidence level $\delta \in (0,1)$ and any $r \leq 2r_0$, one has

$$\mathbb{P}\big(d_H(K,\mathcal{X}_n) \le r\big) \ge 1 - \delta$$

as soon as

$$n \ge \frac{C'_{a,b}}{r^b} \left(\log \frac{1}{r} + \log \frac{1}{\delta}\right).$$

Idea. Fix $r \leq 2r_0$ and consider a minimal (r/2)-covering of K with $N = \operatorname{cov}(K, r/2) \lesssim r^{-b}$ balls B_1, \ldots, B_N of radius r/2. If $d_H(K, \mathcal{X}_n) > r$, one easily checks that at least one ball B_j contains no sample point. Since $P(B_j) \geq ar^b$, the probability that B_j is empty is at most $(1 - a(r/2)^b)^n \leq \exp(-an(r/2)^b)$. A union bound over all j then gives

$$\mathbb{P}(d_H(K,\mathcal{X}_n) > r) \leq N \exp(-an(r/2)^b) \lesssim r^{-b} \exp(-an(r/2)^b).$$

Optimizing in r yields the rate $r_n \simeq (\log n/n)^{1/b}$ and the stated bounds.

In words: for an (a, b)-standard measure, with n points we typically resolve the support down to a scale of order $(\log n/n)^{1/b}$ in Hausdorff distance.

2.2 Plug-in estimation of persistence diagrams

We now want to transfer the Hausdorff convergence of \mathcal{X}_n to convergence of persistence diagrams. Let (M, ρ) be a compact metric space, and let Filt be a filtration functor that associates to each compact subset $A \subset M$ a filtration of simplicial complexes $\mathrm{Filt}(A)$ (e.g. the Vietoris–Rips or Čech filtration). Under mild assumptions, recall from Chapter III that persistent homology is stable with respect to perturbations of A in the Hausdorff metric.

Theorem 2.2 (Stability for spaces (informal)). Let (M, ρ) be a compact metric space and $A, B \subset M$ compact. For a fixed homological degree k, let $D_k(A)$ and $D_k(B)$ denote the persistence diagrams of $H_k(\operatorname{Filt}(A))$ and $H_k(\operatorname{Filt}(B))$ (with coefficients in a field). Then,

$$d_B(D_k(A), D_k(B)) \le d_H(A, B),$$

where d_B is the bottleneck distance.

We now combine Proposition 2.1 and Theorem 2.2. Let (M, ρ) be a compact metric space and let μ be a Borel probability measure on M with compact support $X_{\mu} := \text{support}(\mu) \subset M$. Let X_1, \ldots, X_n be i.i.d. with distribution μ and $\mathcal{X}_n := \{X_1, \ldots, X_n\}$.

Definition 2.3 (Statistical model). Fix a, b > 0. We denote by $\mathcal{P}_{M,a,b}$ the collection of Borel probability measures μ on M such that:

- the support X_{μ} is compact in M;
- μ is (a, b)-standard (with respect to ρ).

Theorem 2.4 (Upper bounds for persistence diagrams). Assume $\mu \in \mathcal{P}_{M,a,b}$ and let $D_k(\mu)$ denote the k-th persistence diagram of $\mathrm{Filt}(X_\mu)$, and $D_k(\mathcal{X}_n)$ that of $\mathrm{Filt}(\mathcal{X}_n)$. Then:

(a) For all $\varepsilon > 0$.

$$\mathbb{P}(d_B(D_k(\mu), D_k(\mathcal{X}_n)) > C \varepsilon) \le \min(\frac{C'}{\varepsilon^b} \exp(-cn\varepsilon^b), 1),$$

where C, C', c > 0 depend only on the filtration and on a, b.

(b) For n large enough,

$$\sup_{\mu \in \mathcal{P}_{M,a,b}} \mathbb{E}_{\mu^n} \left[d_B(D_k(\mu), D_k(\mathcal{X}_n)) \right] \leq C_{a,b} \left(\frac{\log n}{n} \right)^{1/b},$$

where $C_{a,b}$ depends only on a, b and the filtration.

Idea. For each μ , by stability for spaces,

$$d_B(D_k(\mu), D_k(\mathcal{X}_n)) \leq C d_H(X_\mu, \mathcal{X}_n).$$

Apply Proposition 2.1 with $K = X_{\mu}$, then take the supremum over $\mu \in \mathcal{P}_{M,a,b}$ and integrate the tail bound to control the expectation by using $\mathbb{E}[Y] = \int_0^{\infty} \mathbb{P}(Y > y) dy$ for a random variable $Y \ge 0$.

Thus the usual estimator $D_k(\mathcal{X}_n)$ is consistent, and its accuracy improves at the rate $(\log n/n)^{1/b}$, up to constants.

3 Minimax risk and Le Cam's lemma

As standard in statistical decision theory, we now turn to the question of optimality: Does there exist any better estimator than mine? Said otherwise: How well can *any* estimator do, in the worst case, over a given statistical model?

3.1 Risk and minimax risk

Let $(\mathcal{X}, \mathcal{A})$ be a measurable space (the observation space). A *statistical model* is a collection \mathcal{Q} of probability measures on $(\mathcal{X}, \mathcal{A})$.

We are interested in a parameter

$$\theta: \mathcal{Q} \to \Theta$$
.

where (Θ, ρ) is a metric space (for us, Θ will be a space of persistence diagrams, and ρ the bottleneck distance).

An estimator is a measurable map

$$\hat{\theta}_n: \mathcal{X}^n \to \Theta$$
,

applied to n i.i.d. observations $X_1, \ldots, X_n \sim Q$.

Definition 3.1 (Risk and minimax risk). The *risk* of $\hat{\theta}_n$ at Q (for loss ρ) is

$$R(Q, \hat{\theta}_n) := \mathbb{E}_{Q^n} \left[\rho \left(\theta(Q), \hat{\theta}_n(X_1, \dots, X_n) \right) \right].$$

The minimax risk over Q is

$$R_n(\mathcal{Q}) := \inf_{\hat{\theta}_n} \sup_{Q \in \mathcal{Q}} R(Q, \hat{\theta}_n),$$

where the infimum is over all estimators $\hat{\theta}_n : \mathcal{X}^n \to \Theta$.

 $R_n(\mathcal{Q})$ measures the best possible worst-case performance for the estimation problem (\mathcal{Q}, θ) at sample size n.

3.2 Total variation distance

We will use the total variation distance between probability measures.

Definition 3.2 (Total variation). Let Q, Q' be probability measures on $(\mathcal{X}, \mathcal{A})$. The *total* variation distance is

$$TV(Q, Q') := \sup_{A \in \mathcal{A}} |Q(A) - Q'(A)|.$$

If Q and Q' admit densities q, q' with respect to a reference measure ν , then

$$\mathrm{TV}(Q, Q') = \frac{1}{2} \int_{\mathcal{X}} |q - q'| \,\mathrm{d}\nu.$$

Remark 3.3. For product measures, one can show

$$TV(Q^n, Q'^n) \le 1 - (1 - TV(Q, Q'))^n.$$

In particular, if TV(Q, Q') is small, then $TV(Q^n, Q'^n)$ remains bounded away from 1 for moderate n.

3.3 Le Cam's two-point lemma

Le Cam's lemma is a simple but powerful way to get minimax lower bounds, by restricting attention to just two distributions $Q, Q' \in \mathcal{Q}$.

Lemma 3.4 (Le Cam). Let Q be a set of probability measures on $(\mathcal{X}, \mathcal{A})$, and $\theta : Q \to \Theta$ a parameter, where (Θ, ρ) is a metric space. Then for any $Q, Q' \in Q$,

$$R_n(\mathcal{Q}) = \inf_{\hat{\theta}_n} \sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q^n} \rho(\theta(Q), \hat{\theta}_n) \geq \frac{1}{2} \rho(\theta(Q), \theta(Q')) (1 - \text{TV}(Q, Q'))^n.$$

Proof. Fix any estimator $\hat{\theta}_n$, and any $Q, Q' \in \mathcal{Q}$. The key observation is to notice that

$$\sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q^n} \rho(\theta(Q), \hat{\theta}_n) \geq \frac{1}{2} \left(\mathbb{E}_{Q^n} \rho(\theta(Q), \hat{\theta}_n) + \mathbb{E}_{Q'^n} \rho(\theta(Q'), \hat{\theta}_n) \right).$$

Then, changing the measure under which these two integral are taken and using the triangle inequality,

$$\rho(\theta(Q), \hat{\theta}_n) + \rho(\hat{\theta}_n, \theta(Q')) \ge \rho(\theta(Q), \theta(Q')).$$

This means that the estimator cannot simultaneously do very well under Q^n and under Q'^n if these two distributions are difficult to distinguish statistically. After that, we obtain

$$\sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q^n} \rho(\theta(Q), \hat{\theta}_n) \geq \frac{1}{2} \rho(\theta(Q), \theta(Q')) \left(1 - \text{TV}(Q^n, Q'^n)\right),$$

and the proof is completed using a data-processing inequality for testing.

Informally: if two distributions in the model have parameters that are far apart, but are close in total variation, then any estimator must incur a nontrivial error on at least one of them.

4 Minimax rates for persistence

We now apply this framework to persistence diagrams of random point clouds sampled from (a, b)-standard measures.

4.1 Setup and upper bound

We consider the model $\mathcal{P}_{M,a,b}$ defined above, with parameter of interest

$$\theta(\mu) := D_k(\mu),$$

the k-th persistence diagram of $Filt(X_{\mu})$, and loss

$$\rho(D, D') := d_B(D, D').$$

A natural estimator is

$$\widehat{\theta}_n := D_k(\mathcal{X}_n),$$

the diagram built on the empirical point cloud.

Theorem 2.4 shows that this estimator satisfies

$$\sup_{\mu \in \mathcal{P}_{M,a,b}} \mathbb{E}_{\mu^n} d_B \left(D_k(\mu), D_k(\mathcal{X}_n) \right) \leq C_{a,b} \left(\frac{\log n}{n} \right)^{1/b}.$$

In particular,

$$R_n(\mathcal{P}_{M,a,b}) \le C_{a,b} \left(\frac{\log n}{n}\right)^{1/b},$$

so the minimax risk cannot be worse than this rate.

4.2 Lower bound via Le Cam

We now sketch a lower bound, following a two-point argument. Assume that (M, ρ) is a metric space in which we can find a point $x \in M$ and a sequence $(x_n)_{n \ge 1} \subset M$ such that

$$\rho(x,x_n) \approx (an)^{-1/b}$$
.

(This holds in particular in \mathbb{R}^d with $b \leq d$, by choosing a grid of points with spacing of order $n^{-1/b}$.)

For each n, consider the two measures

$$\mu_0 = \delta_x, \qquad \mu_{1,n} := \left(1 - \frac{1}{n}\right)\delta_x + \frac{1}{n}\delta_{x_n}.$$

One can check that both μ_0 and $\mu_{1,n}$ belong to $\mathcal{P}_{M,a,b}$ for suitable constants a,b (they are (a,b)-standard, since balls around x or x_n quickly contain all mass).

Let $D_k(\mu_0)$ and $D_k(\mu_{1,n})$ be the corresponding persistence diagrams (for a fixed filtration and degree k). Geometrically, μ_0 has a single-point support $\{x\}$, while $\mu_{1,n}$ has two points $\{x, x_n\}$ at distance $\rho(x, x_n) \approx n^{-1/b}$.

• The bottleneck distance between $D_k(\mu_0)$ and $D_k(\mu_{1,n})$ is of order $\rho(x,x_n)$: the presence of the extra point x_n creates additional small features in the filtration at scale $\rho(x,x_n)$, so that

$$d_B(D_k(\mu_0), D_k(\mu_{1,n})) \gtrsim \rho(x, x_n) \times n^{-1/b}$$
.

• The total variation distance between μ_0 and $\mu_{1,n}$ is exactly

$$TV(\mu_0, \mu_{1,n}) = \frac{1}{n},$$

so

$$(1 - \text{TV}(\mu_0, \mu_{1,n}))^n = (1 - \frac{1}{n})^n \longrightarrow e^{-1}.$$

Applying Le Cam's lemma

$$R_n(\mathcal{P}_{M,a,b}) \geq \frac{1}{2} d_B(D_k(\mu_0), D_k(\mu_{1,n})) (1 - \text{TV}(\mu_0, \mu_{1,n}))^n$$

and using the two bullets above, we obtain

$$R_n(\mathcal{P}_{M,a,b}) \gtrsim n^{-1/b}$$
.

Theorem 4.1 (Minimax lower bound for persistence). Under the assumptions above, there exists a constant c > 0 such that for all n large enough,

$$R_n(\mathcal{P}_{M.a.b}) \geq c n^{-1/b}$$
.

Combining this with the upper bound from Theorem 2.4, we obtain that the estimator $D_k(\mathcal{X}_n)$ is minimax optimal up to logarithmic factors:

$$c n^{-1/b} \lesssim R_n(\mathcal{P}_{M,a,b}) \leq C_{a,b} \left(\frac{\log n}{n}\right)^{1/b}.$$

Remark 4.2. The log factor in the upper bound comes from the union bound over an r-covering of the support and is typical in nonparametric estimation with (a, b)-standard assumptions. For b = 1, it cannot actually be removed.